

Student Name:

\qquad School: \qquad

Duration: 90 Minutes
Maximum Marks: 100

Note: Attempt all the questions.

Question 1

The length and breadth of a rectangular sheet are 0.975 cm and 0.94 cm , respectively. The area (in cm^{2}) of the sheet in correct significant figures (الارَّام الهامة) (إ المؤترة المناسبة
(Hint; Area $=$ length x breadth)

Answer:

Question 2

The sum of the number 236.02, 207.2, and 0.201 in appropriate significant figures (الاركام الهامة او الهؤترَ المناهبة) is

Answer: \square

Question 3

An object moves along the circle through the points A, B, C, D, and back to A as shown below.

(a) What is the total distance (lanered by the object from A to D?
$\square \mathrm{km}$.
(b) What is the total displacement (${ }^{2} \sim \mid j 1 /$)covered by the object from A to D km .

Question 4

A car is at velocity of $20 \mathrm{~km} / \mathrm{h}$. How far does the car travel if the velocity (18) changes to $40 \mathrm{~km} / \mathrm{h}$ with an acceleration (2la-ll) of $5 \mathrm{~km} / \mathrm{h}^{2}$? \square km .

Question 5

Figure below shows the vectors that point from G to the other point B.

(a) Express the vector GB in component notation (طريقةَ المركبات) $\hat{i}+$ \hat{j}
(b) Find the magnitude of the vector (هقدار اللمiح~) GB

Question 6
(5 marks)

A car traveling at $15 \mathrm{~m} / \mathrm{s}$ starts to decelerate steadily. It comes to a complete stop in
10 seconds. What is it's acceleration (c))? $\mathrm{m} / \mathrm{s}^{2}$.

Question 7

Person B is $\mathbf{4 \boldsymbol { m }}$ to the right of person A relative to the origin O. Person B walks a displacement $\vec{D}_{B}=(4 \hat{\imath}+2 \hat{\jmath}) m$ and person A walks a displacement $\vec{D}_{A}=(2 \hat{\imath}-3 \hat{\jmath}) m$.

Sketch neatly the vector that points from \mathbf{A} to $\mathbf{B}, \vec{D}_{A B}$.

A car traveling at $15 \mathrm{~m} / \mathrm{s}$ starts to decelerate steadily. It comes to a complete stop in 10 seconds. What is it's acceleration (عجل))? $\mathrm{m} / \mathrm{s}^{2}$.
 the new acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) of the object?

```
Answer:
```

\square

Question 10

An object, of mass 20 kg , changes its speed from $80 \mathrm{~m} / \mathrm{s}$ to $100 \mathrm{~m} / \mathrm{s}$ after covering a distance of half a kilometer.
(a) What is the acceleration (عجل) of the object? \square $\mathrm{m} / \mathrm{s}^{2}$
(b) What is the magnitude of the net force (محصلة القوي) that acted on the object?
\square

Question 11
A vector \vec{A} is given by:

$$
\vec{A}=5 \hat{\imath}-\widehat{3}
$$

(a) Find the magnitude of vector \vec{A}.
(b) Find the unit vector of \vec{A}.

Solution:

(a):
(b):

Question 12

In the diagram below, a massless string connects two blocks m_{1} and m_{2} on a flat tabletop. A force of magnitude F pulls on block of mass m_{2} as shown.

Draw separate well-labeled free-body diagrams showing all the forces acting on m_{1} and m_{2}.

Solution

$$
F_{n e t}^{m_{1}}=
$$

$$
F_{n e t}^{m_{2}}=
$$

An empty box is pulled by two men with horizontal forces, as shown below.
$\vec{F}_{1}=20 \mathrm{~N}$ and $\vec{F}_{2}=30 \mathrm{~N}$.

\square

\square

(d) If the box has a mass of 20 kg , what is the acceleration (${ }^{2} \mathrm{l}$) produced by the resultant force (محصـلة القوي) \square

Question 14

A constant force acting on a body of mass 5 kg changes its velocity from $20 \mathrm{~m} / \mathrm{s}$ to $45 \mathrm{~m} / \mathrm{s}$ in 5 seconds. Find the acceleration produced by the applied force and find the applied force.

Solution:

Formula Sheet

$$
\begin{gathered}
\text { Velocity, } v=\frac{\text { displacement }}{\text { time }}=\frac{x}{t} \\
\text { Acceleration, } a=\frac{\text { velocity }}{\text { time }}=\frac{v}{t} \\
v=u+a t, \quad v^{2}-u^{2}=2 a x, \quad x=u t+\frac{1}{2} a t^{2} \\
\vec{A}=|A| \hat{A}, \quad \hat{A}=\frac{\vec{A}}{|A|}, \quad \vec{A}=A_{x} \hat{\imath}+A_{y} \hat{\jmath} \\
|\vec{R}|=\sqrt{R_{x}^{2}+R_{y}^{2}}, \quad \tan \alpha=\frac{R_{y}}{R_{x}}, \quad \hat{R}=\frac{\vec{R}}{|R|} \\
\vec{p}=m \vec{v}, \quad \vec{F}=m \vec{a}, \quad F_{f}=\mu_{s} N
\end{gathered}
$$

