SAMPLE ENTRANCE EXAM – PHYSICS (B)

Student Name:	School:
Maximum Marks: 100	Duration: 90 Minutes
Note: Attempt all the questions.	
Question 1	(5 marks)
The mass and the volume of a body are 4.237 density (in kg/m³) of the body in correct sign (المناسبة) is (Hint; Density (كتَلَة) = Mass (كَتَلَة)/Volume(عجم) Answer:	الارقام الهامة او المؤترة) ificant figures
Question 2	(5 marks)
The number of significant figures (او المؤثرة	in 0.002900 is (الارقام الهاما
Select one:	
O a. 2	
O b. 3	
O c. 4	
O d. 5	

Question 3 (5+5=10 marks)

Question 4 (5 marks)

A car is at velocity of 20 km/h. How far does the car travel if the velocity (سرعة) changes to 40 km/h with an acceleration (العجلة) of 5 km/h²?

Question 5 (2+3=5 marks)

Question 6 (5 marks)

A car is at velocity of 20 km/h. If the velocity changes to 40 km/h after the car travels 120 km, what is its acceleration (العجلة)? km/h.

Question 7 (5 marks)

Person B is $\underline{4 \ m \ to \ the \ right}$ of person A relative to the origin O. Person B walks a displacement $\vec{D}_B = (2\hat{\imath} + 2\hat{\jmath}) \ m$ and person A walks a displacement $\vec{D}_A = (3 \ \hat{\imath} - 2\hat{\jmath}) \ m$.

Sketch neatly the vector that points from A to B, \overrightarrow{D}_{AB} .

Question 8	(5 marks)	
A car traveling at 15 m/s starts to decelerate steadily. It comes to a continuous seconds. What is it's acceleration (a=b)? m/s^2 .	nplete stop in	
Question 9 (5 m	narks)	
Suppose that an object is accelerating (عجلة) at a rate of 2 m/s². If the net force (عجلة القوي) is tripled (تلات اضعاف) and the mass is doubled (تلات اضعاف), then what is the new acceleration (in m/s²) of the object? Answer:		
Question 10 (5+5	5=10 marks)	
An object, of mass 20 kg, changes its speed from 80 m/s to 100 m/s after distance of half a kilometer. (a) What is the acceleration (عجلة) of the object? (b) What is the magnitude of the net force (محصلة القوي) that acted on the N.		
Question 11 (5+5) A vector \vec{A} is given by:	5=10 marks)	

 $\vec{A} = 4\hat{\imath} + 3\hat{\jmath}$

(a) Find the **magnitude** of vector \vec{A} . (b) Find the **unit vector** of \vec{A} . **Solution:**

(a):

(b):

Question 12 (5+5=10 marks)

In the diagram below, a massless string connects two blocks m_1 and m_2 on a flat tabletop. A force of magnitude F pulls on block of mass m_2 as shown.

Draw $\underline{separate}$ well-labeled free-body diagrams showing all the forces acting on m_1 and m_2 .

Solution

$$F_{net}^{m_1} = F_{net}^{m_2} =$$

Question 13 (2.5x4=10 marks)

An empty box is pulled by two men with two forces, as shown below. $\vec{F}_1 = 10 \ N$ and $\vec{F}_2 = 15 \ N$.

- (a) Find the x-components of the resultant force (اكسمركية محصلة القوي في اتجاه)
- (b) Find the y-component of the resultant force (مركبة محصلة القوي في اتجاه واي)
- (c) Find the magnitude of the resultant force (مقدار محصلة القوي)
- (d) If the box has a mass of 10 kg, what is the acceleration (عجلة) produced by the resultant force (محصلة القوي) m/s^2

Question 14 (10 marks)

A constant force acting on a body of mass 10 kg changes its velocity from $10 \, m/s$ to $35 \, m/s$ in 10 seconds. Find the *acceleration* produced by the applied force and find the applied force.

Solution:

Formula Sheet

$$Velocity, v = \frac{displacement}{time} = \frac{x}{t}$$

$$Acceleration, a = \frac{velocity}{time} = \frac{v}{t}$$

$$v = u + at, \quad v^2 - u^2 = 2ax, \quad x = ut + \frac{1}{2}at^2$$

$$\vec{A} = |A| \, \hat{A}, \quad \hat{A} = \frac{\vec{A}}{|A|}, \quad \vec{A} = A_x \hat{\imath} + A_y \hat{\jmath}$$

$$|\vec{R}| = \sqrt{R_x^2 + R_y^2}, \quad \tan \alpha = \frac{R_y}{R_x}, \quad \hat{R} = \frac{\vec{R}}{|R|}.$$

$$\vec{p} = m\vec{v}, \qquad \vec{F} = m\vec{a}, \quad F_f = \mu_s N$$