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a b s t r a c t 

Coronaviruses are highly transmissible and are pathogenic viruses of the 21st century worldwide. In gen- 

eral, these viruses are originated in bats or rodents. At the same time, the transmission of the infection 

to the human host is caused by domestic animals that represent in the habitat the intermediate host. 

In this study, we review the currently collected information about coronaviruses and establish a model 

of differential equations with piecewise constant arguments to discuss the spread of the infection from 

the natural host to the intermediate, and from them to the human host, while we focus on the potential 

spillover of bat-borne coronaviruses. The local stability of the positive equilibrium point of the model 

is considered via the Linearized Stability Theorem. Besides, we discuss global stability by employing an 

appropriate Lyapunov function. To analyze the outbreak in early detection, we incorporate the Allee ef- 

fect at time t and obtain stability conditions for the dynamical behavior. Furthermore, it is shown that 

the model demonstrates the Neimark-Sacker Bifurcation. Finally, we conduct numerical simulations to 

support the theoretical findings. 

© 2020 Published by Elsevier Ltd. 
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. Introduction 

According to the International Committee on Taxonomy of

iruses (ICTV), coronaviruses are members of the sub-family Coro-

avirinae in the family Coronaviridae and the order Nidovirales .

oronavirinae consists of four genera groups; α-coronavirus, β-

oronavirus, γ -coronavirus, and δ-coronavirus [ 1 , 2 ]. Recently, these

roups are divided in terms of phylogenetic clustering while before

hey were sorted based on serology. All viruses of Nidovirales order

re enveloped, non-segmented positive-sense RNA viruses, where

ithin this, the coronaviridae has the most significant identified

NA genomes, containing approximately 30 kgbases (kb) genomes.

n the other hand, all coronaviruses have animal origin [ 2 , 3 ].

able 1 below shows that the four genera of coronaviruses origi-

ated from animals. 

The HCoV-NL63 and HCoV-229E are α−coronaviruses that

ause mild infections in humans. On the other hand, SADS-CoV,

hich has swine as an intermediate host role, does not show any
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vidence of infections in humans. HCoV-OC43 and HCoV-HKU1 are

oth β−coronaviruses and are also mostly harmless to the human

ody that has a rodent-borne origin. HCoV-229E and HCoV-OC43

ere isolated nearly 50 years ago, while HCoV-NL63 and HCoV-

KU1 were identified in 2003. Coronaviruses have not considered

s highly pathogenic until the outbreak of SARS-CoV in 2003 and

ERS-CoV in 2012. The spread of SARS-CoV in China (Guangdong)

ndicated that a coronavirus was transmitted from bats to an in-

ermediate host like market civets, and from there to the human

ost, while the outbreak of MERS-CoV in the middle east countries

lso came from bats to dromedary camels as an intermediate host,

nd then, it was transmitted to human [4–8] . These viruses cause

espiratory and intestinal infections, including fever, dizziness, and

ough. 

On the 12th of December 2019, a new virus form of Coron-

viridae was reported in China (Wuhan). The outbreak was asso-

iated again with intermediate hosts like reptilians, while the nat-

ral host was assumed as bats. This novel virus was designated

t first as WH 

–Human 1 and was referred after that as COVID-19

y the WHO. COVID-19 was characterized by two members of β-

oronavirus; human-origin coronavirus (SARS-CoV Tor2) and bat-
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Table. 1 

Genera of CoV and the pathogenic class. 

Coronavirinae Genera α-CoV β-CoV γ-CoV δ-CoV 

Pathogenic Class mammals mammals both non-mammal and mammals both non-mammal and mammals 

Fig. 1. Natural-Intermediate and Human Host transmission. 
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origin coronavirus (bat-SL-CoVZC45), while intensive studies show

that it was most closely related to the bat-origin coronavirus [9] .

As a result of the above discussion, the primary assumption was

set as the natural host of COVID-19 is the bat, which infects the

human population with a domestic intermediate host. Fig. 1 shows

the animal origins of the human coronaviruses SARS-CoV, MERS-

CoV, and COVID-19. 

Explicitly stating, if we analyze the environmental origin of

COVID-19, then we adopt the hypothesis that says that infected

bats may spread the disease. These bats of genus Rhinolophus are

mainly in the area of Shatan River Valley. Domestic animals like

snakes in that area are hunted for the food market in Wuhan,

which had an intermediate host role in the transmission. Finally,

this virus spillover from the intermediate hosts to cause sev-

eral diseases in human. A virus that started with an endemic

pathogenic behavior in China (Wuhan) reaches somehow to a pan-

demic point worldwide. 

In this study, we give brief information about coronaviruses

and introduce the genera of Covid-19. We explain the transmission

from the natural host to the intermediate one, and from there to

the human host. The mathematical model in Section 2 shows the

spread from animal to human and human to human. We noticed

in our model that the transmission risk from human to human is

higher and more dangerous than the effect from animal to human.

In the end, the study reveals that the infected class who do not

know they are infected (because of late recognized symptoms) is

the major problem of a pandemic spread worldwide. 

2. The model 

Many research areas in biology or medicine are attractive top-

ics for scholars engaging in applied mathematics since mathemat-

ical modeling has an essential role in understanding the dynam-

ics of many diseases and biological phenomena. Over the years,

biological models have been formulated mathematically [10–13] .

Mainly, studies are restricted to integer-order differential equa-

tions. However, it is seen that many problems in biology, as well

as in other fields like engineering, finance, and economics, can

be formulated successfully by differential equations with piece-

wise constant arguments [14–17] . In mathematical modeling, for

an overlapping species population, it is convenient to use differen-

tial equations; on the contrary, for a non-overlapping species one,
t is suitable to use difference equations [14] . However, there are

ome dynamics in the environment, which combine the tools of

oth differential-difference equations concerning time t . For such

iological events, it is preferred to construct models of differential

quations with both continuous and discrete-time. Relevant studies

hat have considered the discrete and continuous-time effects as

ifferential equations with piecewise constant arguments are given

n [17–21] . 

The question of whether the coronavirus is used as a biological

eapon or not is out of our primary objective in the paper. How-

ver, this question was under consideration for the plague disease

22] . 

We consider here the pandemic infection that occurs when the

irus is transmitted to the human body from the intermediate host

nd continues to spread from human-to-human. The first three

quations on the system show an SI (susceptible-infected) model

o explain the transmission from human-to-human, where S is the

usceptible class, C 1 is the infected class, which does not know that

hey are infected because of the late occurred symptoms of COVID-

9 and C 2 represents the infected class that knows they are in-

ected. The spillover from the intermediate infected class M to the

uman host S denotes a predator-prey mathematical model, while

or the transmission from the natural host N , which is the bat pop-

lation, to intermediate host M is a host-parasite model of Holling

ype II. Thus, the mathematical model of this biological phenom-

na is modeled as follows; 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dS 

dt 
= S ( t ) r 1 ( p − α1 S ( t ) ) − β1 C 1 ( [ [ t ] ] ) S ( t ) 

−β2 M ( [ [ t ] ] ) S ( t ) + σ1 M ( [ [ t ] ] ) S ( t ) 

d C 1 
dt 

= C 1 ( t ) r 2 ( 1 − α2 C 1 ( t ) ) + β1 ( 1 − ε 1 ) S ( [ [ t ] ] ) C 1 ( t ) 

−θC 1 ( [ [ t ] ] ) C 1 ( t ) + β2 ( 1 − ε 2 ) M ( [ [ t ] ] ) C 1 ( t ) 

d C 2 
dt 

= C 2 ( t ) ( 1 − α3 C 2 ( t ) + θC 1 ( [ [ t ] ] ) + β1 ε 1 S ( [ [ t ] ] ) 

+ β2 ε 2 M ( [ [ t ] ] ) ) 

dM 

dt 
= M ( t ) r 3 ( 1 − α4 M ( t ) ) − σ2 M ( t ) − γ f ( t ) N ( [ [ t ] ] ) 

dN 

dt 
= N ( t ) r 4 ( 1 − α5 N ( t ) ) + δg ( [ [ t ] ] ) N ( t ) 

(1)

here 

f ( t ) = 

M ( t ) 

1 + heωM ( t ) 
andg ( t ) = 

M ( t ) 

1 + heωM ( t ) 
(2)

epresent the Holling type II functions. All the parameters in

1) belong to R and [[t]] is the integer part of t ∈ [0, ∞ ). 

The susceptible S is composed of individuals that have not con-

acted the infection but can get infected through contact with the

umans that do not know they are infected and from the interme-

iate hosts. r 1 is the population growth rate of the susceptible pop-

lation and α1 denotes the logistic rate. p is a rate of the suscep-

ible population per year. The susceptible lost their class following

ontacts with infectives C 1 and the intermediate host M at a rate

1 and β2 , respectively. σ 1 shows the parameter of the interaction

etween the hunted M class and the predator S population. 
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quation, r 2 is the population growth rate of the class, while α2 is the 

l  at a rate θ and be aware of the infection. Another possibility is that 

a oth classes noticed that they are infected, which is given with the rate 

ɛ ptoms to be aware of the infection, which is given by a rate of ɛ 2 . The 

l

a transmission spread. r 3 is the intrinsic growth rate of the population, 

w  during the interaction between the intermediate host and susceptible 

c

 this dynamic system. r 4 is the intrinsic growth rate and α5 is the 

l  natural host. e is the attack rate of the bat population to infect the M , 

w vity of the natural host. h is the rate of average time spent on infecting 

t ing time. 

3

 (1) . Before proceeding to the main result, we need some preparations. 

 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3) 

w ) are positive as well. Moreover, on an interval of n ≤ t < n + 1 , we can 

w⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 −α2 r 2 C 1 ( t ) 
2 

(4) 

w f (4) concerning t on [ n , t ) and taking t → n + 1 , we get a difference 

e⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 

+ σ1 M ( n ) ) 

1 M ( n ) ) e −( r 1 p −β1 C 1 ( n ) −β2 I ( n ) + σ1 M ( n ) ) 

 ( n ) − θC 1 (n ) + β2 ( 1 − ε 2 ) M(n ) ) 

θC 1 (n ) + β2 ( 1 − ε 2 ) M(n ) ) e −( r 2 + β1 ( 1 −ε 1 ) S ( n ) −θC 1 (n )+ β2 ( 1 −ε 2 ) M(n ) ) 

 ) + β2 ε 2 M ( n ) ) 

 

ε 2 M ( n ) ) e −( 1+ θC 1 ( n ) + β1 ε 1 S ( n ) + β2 ε 2 M ( n ) ) 

n ) 

)

 

)
e 

−
( 

r 3 −σ2 −
γ N(n ) 

1 + heωM(n ) 

) 

 

r 4 + 
δM(n ) 

1 + heωM(n ) 

) 

(5) 

T e behavior of (1) , since (5) is a solution of (1) for t ∈ [ n, n + 1 ) . In this 

s co-existing equilibrium point 
 = ( ̄S , C , C , M̄ , N̄ ) that represents the 
The C 1 class does not know that they have COVID-19. In this e

ogistic rate. The population of this class decreases after screening

fter the S-C 1 contact, the symptoms occur in early stages so that b

 1 . The intermediate host infected group could also show early sym

ogistic rate of C 2 is denoted as α3 . 

M is the domestic animal as an intermediate class in the coron

hile α4 is the logistic rate. σ 2 shows the effect on the hunted M

lass. γ denotes the predation rate in the host-parasite scheme. 

N represents the natural host (bat population) of COVID-19 in

ogistic rate of the population. δ shows the conversion factor of the

hile ω (0 < ω ≤ 1) represents the fraction of the potential infecti

he domestic intermediate class, which is also known as the handl

. Local and global stability analysis 

Herein, we investigate the local and global stability of the system

Integration of system (1) on an interval of n ≤ t < n + 1 leads to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S ( t ) = S ( t ) · e 

t ∫ 
n 
{ r 1 ( p −α1 S ( s ) ) −β1 C 1 ( n ) −β2 M ( n ) + σ1 M ( n ) } ds 

C 1 ( t ) = C 1 ( t ) · e 

t ∫ 
n 
{ r 2 ( 1 −α2 C 1 ( s ) ) + β1 ( 1 −ε 1 ) S ( n ) −θC 1 ( n ) + β2 ( 1 −ε 2 ) M ( n ) } ds 

C 2 ( t ) = C 2 (n ) · e 

t ∫ 
n 
{ 1 −α3 C 2 ( s ) + θC 1 ( n ) + β1 ε 1 S ( n ) + β2 ε 2 M ( n ) } ds 

M ( t ) = M(n ) · e 

t ∫ 
n 

{ 
r 3 ( 1 −α4 M ( s ) ) −σ2 − γ N(n ) 

1+ heωM(n ) 

} 
ds 

N ( t ) = N(n ) · e 

t ∫ 
n 
{ r 4 ( 1 −α5 N ( s ) ) + δM(n ) 

1+ heωM(n ) } ds 

hich means that for positive initial conditions, the solutions of (3

rite system (3) as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dS 

dt 
− { r 1 p − β1 C 1 ( n ) − β2 M ( n ) + σ1 M ( n ) } S ( t ) = −α1 r 1 S ( t ) 

2 

d C 1 
dt 

− { r 2 + β1 ( 1 − ε 1 ) S ( n ) − θC 1 (n ) + β2 ( 1 − ε 2 ) M(n ) } C 1 ( t ) =
d C 2 
dt 

− { 1 + θC 1 ( n ) + β1 ε 1 S ( n ) + β2 ε 2 M ( n ) } C 2 ( t ) = −α3 C 2 ( t ) 
2 

dM 

dt 
−

{
r 3 − σ2 − γ N(n ) 

1 + heωM(n ) 

}
M ( t ) = −α4 r 3 M ( t ) 

2 

dN 

dt 
−

{
r 4 + 

δM(n ) 

1 + heωM(n ) 

}
N ( t ) = −α5 r 4 N ( t ) 

2 

hich is a system of Bernoulli equations. Integrating both sides o

quation system such as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S ( n + 1 ) = 

S(n ) ( r 1 p − β1 C 1 ( n ) − β2 M ( n )

α1 r 1 S(n ) + ( r 1 ( p − α1 S(n ) ) − β1 C 1 ( n ) − β2 M ( n ) + σ

C 1 ( n + 1 ) = 

C 1 ( n ) ( r 2 + β1 ( 1 − ε 1 ) S

α2 r 2 C 1 ( n ) + ( r 2 ( 1 − α2 C 1 ( n ) ) + β1 ( 1 − ε 1 ) S ( n ) −
C 2 ( n + 1 ) = 

C 2 ( n ) ( 1 + θC 1 ( n ) + β1 ε 1 S ( n

α3 C 2 ( n ) + ( 1 − α3 C 2 ( n ) + θC 1 ( n ) + β1 ε 1 S ( n ) + β2

M ( n + 1 ) = 

M(n ) 

(
r 3 − σ2 − γ N(n ) 

1 + heωM(

α4 r 3 M(n ) + 

(
r 3 ( 1 − α4 M(n ) ) − σ2 − γ N(n ) 

1 + heωM(n )

N ( n + 1 ) = 

N(n ) 

(
r 4 + 

δM(n ) 

1 + heωM(n ) 

)

α5 r 4 N(n ) + 

(
r 4 ( 1 − α5 N(n ) ) + 

δM(n ) 

1 + heωM(n ) 

)
e 

−
(

herefore, we conclude that any global analysis of (5) represents th

ection, we want to consider the local and global stability of the 
1 2 
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 around 
 is given by 

(6) 

 

= 

β1 ( 1 − ε 1 ) 
(

1 − e −ψ̄ 2 

)
α2 r 2 

, a 22 = 

( θ + α2 r 2 ) e 
−ψ̄ 2 

α2 r 2 

e −ψ̄ 3 

)
α3 

, a 33 = e −ψ̄ 3 , a 34 = 

β2 ε 2 

(
1 − e −ψ̄ 3 

)
α3 

 

−ψ̄ 4 − 1 

)
1 + heω M̄ 

) , a 54 = 

δ
(

1 − e −ψ̄ 5 

)
α5 r 4 

(
1 + heω M̄ 

)2 
, a 55 = e −ψ̄ 5 

(7) 

(8) 

(9) 

(10) 

tically stable. Thus, | λ1, 2 | < 1 if and only if 

(11) 

Assume that the basic reproduction numbers are R 01 < 1 and R 02 < 1. 

α1 r 1 

 

( 1 − ε 1 ) ( 1 − R 01 ) 

)
, ln 

(
β1 ( 1 − ε 1 ) ( 1 − R 01 ) 

β1 ( 1 − ε 1 ) ( 1 − R 01 ) − α2 r 2 

))
, 

 M̄ 

)2 

) ) 

, 
positive equilibrium point of system (5) . The Jacobian matrix of (5)

J ( 
) = 

⎛ 

⎜ ⎜ ⎝ 

a 11 a 12 0 a 14 0 

a 21 a 22 0 a 24 0 

a 31 a 32 a 33 a 34 0 

0 0 0 a 44 a 45 

0 0 0 a 54 a 55 

⎞ 

⎟ ⎟ ⎠ 

where 

a 11 = e −ψ̄ 1 , a 12 = 

β1 

(
e −ψ̄ 1 − 1 

)
α1 r 1 

, a 14 = 

( σ1 − β2 ) 

(
1 − e −ψ̄ 1 

)
α1 r 1 

, a 21

a 24 = 

β2 ( 1 − ε 2 ) 
(

1 − e −ψ̄ 2 

)
α2 r 2 

, a 31 = 

β1 ε 1 

(
1 − e −ψ̄ 3 

)
α3 

, a 32 = 

θ
(

1 −

a 44 = 

heωγ N̄ + 

(
α4 r 3 

(
1 + heω M̄ 

)2 − heωγ N̄ 

)
e −ψ̄ 4 

α4 r 3 
(
1 + heω M̄ 

)2 
, a 45 = 

γ
(

e

α4 r 3 
(

and 

ψ̄ 1 = r 1 p − β1 C 1 + ( σ1 − β2 ) ̄M 

ψ̄ 2 = r 2 + β1 ( 1 − ε 1 ) ̄S − θC 1 + β2 ( 1 − ε 2 ) ̄M 

ψ̄ 3 = 1 + θC 1 + β1 ε 1 ̄S + β2 ε 2 M̄ 

ψ̄ 4 = r 3 − σ2 ̄S − γ N̄ 

1 + heω M̄ 

ψ̄ 5 = r 4 + 

δM̄ 

1 + heω M̄ 

. 

Thus, the characteristic equation of (6) is 

( ( a 44 − λ) ( a 55 − λ) − a 45 a 54 ) · ( ( a 11 − λ) ( a 22 − λ) − a 12 a 21 ) = 0 

where 

λ = e −ψ̄ 3 

We need the following theorem to prove the local stability. 

Theorem 1. Linearized Stability Theorem [23] 

Let 

y n +1 = f ( y n , y n −1 ) , n = 0 , 1 , 2 , 

where for p, q ∈ R 

+ the characteristic equation is 

λ2 − pλ − q = 0 , 

and the initial conditions are y −1 , y 0 ∈ R 

+ . 
If | λ1, 2 | < 1 then the equilibrium ȳ of Eq. (9) is locally asympto

| p | < 1 − q < 2 . 

Theorem 2. Let 
 be the positive equilibrium point of system (5) . 

Furthermore, let β1 > θ + α2 r 2 , 
α2 
α1 

> 

r 1 
r 2 

, ɛ 1 < 1 and 

N̄ < 

α4 r 3 ( 1+ heω ̄M ) 
2 

heωγ
. If 

ψ̄ 1 ∈ 

(
ln 

(
β1 

β1 − θ − α2 r 2 

)
, ln 

(
β1 

β1 − α1 r 1 

))
, ψ̄ 2 ∈ 

(
ln 

(
1 + 

β1

ψ̄ 4 ∈ 

( 

0 , ln 

( 

γ

γ − α4 r 3 
(
1 + heω M̄ 

)
) ) 

∪ 

(
ln 

(
γ

γ −α4 r 3 ( 1+ heω ̄M ) 
2 

)
, ∞ 

)

and 

ψ̄ 5 ∈ 

( 

l n 

( 

1 + 

α5 r 4 
(
1 + heω M̄ 

)
δ( 1 − R 02 ) 

) 

, l n 

( 

δ( 1 − R 02 ) 

δ( 1 − R 02 ) − α5 r 4 
(
1 + heω
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w
 

, then the positive equilibrium point of system (5) is locally asymptot- 

i

λ (12) 

s r the quadratic equations given by 

λ (13) 

a

λ (14) 

T

λ

w

(15) 

w

R (16) 

i ential of the S − C 1 class. In applying the Linearized Stability Theorem 

t

| (17) 

F

1

w

ψ (18) 

w ide, considering 

|
w

ψ (19) 

w

ψ (20) 

w

ψ
) 

α2 r 2 

))
(21) 

A s 

λ

w

(22) 

w

R (23) 

i lasses. From the Linearized Stability Theorem, we want to consider the 

c

| (24) 
here r 1 < 

β1 
α1 

, r 2 < 

β1 ( 1 −ε 1 ) 
α2 

, r 3 < 

γ

α4 ( 1+ heω ̄M ) 
and r 4 < 

δ( 1 −R 02 ) 

α5 ( 1+ heω ̄M ) 
2

cally stable. 

Proof. Let us consider at first (8) , where we obtain 

= e −ψ̄ 3 < 1 , 

ince ψ̄ 3 = 1 + θC 1 + β1 ε 1 ̄S + β2 ε 2 M̄ > 0 . Thus, we need to conside

2 − ( a 11 + a 22 ) λ − ( a 12 a 21 − a 11 a 22 ) = 0 

nd 

2 − ( a 44 + a 55 ) λ − ( a 45 a 54 − a 44 a 55 ) = 0 . 

he characteristic Eq. (13) can be rewritten in a form of 

2 − ( a 11 + a 22 ) λ − a 12 a 21 

(
1 − a 11 a 22 

a 12 a 21 

)
= 0 , 

hich implies 

λ2 − ( a 11 + a 22 ) λ − a 12 a 21 ( 1 − R 01 ) = 0 , 

here 

 01 = 

a 11 a 22 

a 12 a 21 

s the basic reproduction number, that shows the transmission pot

o (15) , we obtain 

 

a 11 + a 22 | < 1 − a 12 a 21 ( 1 − R 01 ) < 2 . 

rom 

 − a 12 a 21 ( 1 − R 01 ) < 2 , 

e get 

¯
 1 < ln 

(
β1 

β1 − α1 r 1 

)
and ψ̄ 2 < ln 

(
β1 ( 1 − ε 1 ) ( 1 − R 01 ) 

β1 ( 1 − ε 1 ) ( 1 − R 01 ) − α2 r 2 

)

here R 01 < 1, r 1 < 

β1 
α1 

and r 2 < 

β1 ( 1 −ε 1 ) 
α2 

for ɛ 1 < 1. On the other s

 

a 11 + a 22 | < 1 − a 12 a 21 ( 1 − R 01 ) , 

e have 

¯
 1 > ln 

(
β1 

β1 − θ − α2 r 2 

)
and ψ̄ 2 > ln 

(
1 + 

α1 r 1 
β1 ( 1 − ε 1 ) ( 1 − R 01 ) 

)
here β1 > θ + α2 r 2 . 

From (18) and (19) , we obtain 

¯
 1 ∈ 

(
ln 

(
β1 

β1 − θ − α2 r 2 

)
, ln 

(
β1 

β1 − α1 r 1 

))
here 

α2 
α1 

> 

r 1 
r 2 

, and 

¯
 2 ∈ 

(
ln 

(
1 + 

α1 r 1 
β1 ( 1 − ε 1 ) ( 1 − R 01 ) 

)
, ln 

(
β1 ( 1 − ε 1 ) ( 1 − R 01 

β1 ( 1 − ε 1 ) ( 1 − R 01 ) −
dditionally, the characteristic Eq. (14) can also be rewritten such a

2 − ( a 44 + a 55 ) λ − a 45 a 54 

(
1 − a 44 a 55 

a 45 a 54 

)
= 0 

hich implies 

λ2 − ( a 44 + a 55 ) λ − a 45 a 54 ( 1 − R 02 ) = 0 

here 

 02 = 

a 44 a 55 

a 45 a 54 

s the basic reproduction number of the intermediate-natural host c

onditions for the given inequality 

 

a 44 + a 55 | < 1 − a 45 a 54 ( 1 − R 02 ) < 2 . 
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(25) 

2 ) 

1 + heω M̄ 

)2 

) 

(26) 

m (24) , we obtain 

(27) 

(28) 

) , we obtain 

 M̄ 

)2 

) ) 

(29) 

¯
 

)2 

) 

, ∞ 

) 

(30) 

oof. �

 who do not know they are infected, are the control class in the spread. 

 a dominant role, since that one has the essential role in transmitting 

th S − C 1 and M − N are R 01 < 1 and R 02 < 1. Moreover, the susceptible 

re the awareness of the symptoms and the screening rate. We noticed 

come from the susceptible class as well as from the intermediate class, 

 is more important to keep the population rate per year non-infected. 

ntrollable phenomenon worldwide. 

 e solution t o the sy stem (5) . Then the following statements are true. 

 ) 

(31) 

ly. 

 1 ( n ) 

(32) 
From 

γ
(

1 − e −ψ̄ 4 

)
δ
(

1 − e −ψ̄ 5 

)
α4 r 3 

(
1 + heω M̄ 

)
α5 r 4 

(
1 + heω M̄ 

)2 
( 1 − R 02 ) < 1 

we have 

ψ̄ 4 < ln 

( 

γ

γ − α4 r 3 
(
1 + heω M̄ 

)
) 

and ψ̄ 5 < ln 

( 

δ( 1 − R 0

δ( 1 − R 02 ) − α5 r 4 
(

where R 02 < 1, r 3 < 

γ

α4 ( 1+ heω ̄M ) 
and r 4 < 

δ

α5 ( 1+ heω ̄M ) 
2 . Moreover, fro

| a 44 + a 55 | < 1 − a 45 a 54 ( 1 − R 02 ) 

which holds for the inequalities 

ψ̄ 5 > ln 

( 

1 + 

α5 r 4 
(
1 + heω M̄ 

)
δ( 1 − R 02 ) 

) 

and 

ψ̄ 4 > ln 

( 

γ

γ − α4 r 3 
(
1 + heω M̄ 

)2 

) 

and N̄ < 

α4 r 3 ( 1+ heω ̄M ) 
2 

heωγ
. Considering (26) together with (27) and (28

ψ̄ 5 ∈ 

( 

l n 

( 

1 + 

α5 r 4 
(
1 + heω M̄ 

)
δ( 1 − R 02 ) 

) 

, l n 

( 

δ( 1 − R 02 ) 

δ( 1 − R 02 ) − α5 r 4 
(
1 + heω

and 

ψ̄ 4 ∈ 

( 

0 , ln 

( 

γ

γ − α4 r 3 
(
1 + heω M̄ 

)
) ) 

∪ 

( 

ln 

( 

γ

γ − α4 r 3 
(
1 + heω M

where r 3 < 

γ

α4 ( 1+ heω ̄M ) 
and r 4 < 

δ( 1 −R 02 ) 

α5 ( 1+ heω ̄M ) 
2 . This completes the pr

Remark 1. Theorem 2 shows that among the human hosts, those

In contrast, between the animal hosts, the intermediate class plays

the virus from animal to human. The transmission potential for bo

class and the C 1 class is stable based on two parameters, which a

that class C 1 should be more aware of the symptoms that might be

than the S class to stop the outbreak. For the susceptible class, it

The transmission of the virus to the offspring would reach an unco

Theorem 3. Let ( S( n ) , C 1 ( n ) , C 2 ( n ) , M( n ) , N( n ) ) ∞ 

n =0 be a positiv

(i) If ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

r 1 p − β1 C 1 ( n ) − β2 M ( n ) + σ1 M ( n ) > α1 r 1 S ( t ) 

r 2 + β1 ( 1 − ε 1 ) S ( n ) − θC 1 (n ) + β2 ( 1 − ε 2 ) M(n ) > α2 r 2 C 1 ( n

1 + θC 1 ( n ) + β1 ε 1 S ( n ) + β2 ε 2 M ( n ) > α3 C 2 ( n ) 

r 3 − σ2 − γ N(n ) 

1 + heωM(n ) 
> α4 r 3 M(n ) 

r 4 + 

δM(n ) 

1 + heωM(n ) 
> α5 r 4 N(n ) 

then ( S( n ) , C 1 ( n ) , C 2 ( n ) , M( n ) , N( n ) ) ∞ 

n =0 
is increasing monotonical

(i) If ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 < r 1 p − β1 C 1 ( n ) − β2 M ( n ) + σ1 M ( n ) < α1 r 1 S ( t ) 

0 < r 2 + β1 ( 1 − ε 1 ) S ( n ) − θC 1 (n ) + β2 ( 1 − ε 2 ) M(n ) < α2 r 2 C

0 < 1 + θC 1 ( n ) + β1 ε 1 S ( n ) + β2 ε 2 M ( n ) < α3 C 2 ( n ) 

0 < r 3 − σ2 − γ N(n ) 

1 + heωM(n ) 
< α4 r 3 M(n ) 

0 < r 4 + 

δM(n ) 
< α5 r 4 N(n ) 
1 + heωM(n ) 
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t lly. 

n to system (5) . From (31) , we obtain 

 1 ( n ) − β2 M ( n ) + σ1 M ( n ) 

( n ) − β2 M ( n ) + σ1 M ( n ) ) e −( r 1 p −β1 C 1 ( n ) −β2 I ( n ) + σ1 M ( n ) ) 
> 1 

 

S ( n ) − θC 1 (n ) + β2 ( 1 − ε 2 ) M(n ) 

 ) − θC 1 (n ) + β2 ( 1 − ε 2 ) M(n ) ) e −( r 2 + β1 ( 1 −ε 1 ) S ( n ) −θC 1 (n )+ β2 ( 1 −ε 2 ) M(n ) ) 
> 1 

 

n ) + β1 ε 1 S ( n ) + β2 ε 2 M ( n ) 

+ β1 ε 1 S ( n ) + β2 ε 2 M ( n ) ) e −( 1+ θC 1 ( n ) + β1 ε 1 S ( n ) + β2 ε 2 M ( n ) ) 
> 1 

σ2 − γ N(n ) 

1 + heωM(n ) 

− σ2 − γ N(n ) 

1 + heωM(n ) 

)
e 

−
( 

r 3 −σ2 −
γ N(n ) 

1 + heωM(n ) 

) > 1 

 4 + 

δM(n ) 

1 + heωM(n ) 

 ) ) + 

δM(n ) 

1 + heωM(n ) 

)
e 

−
( 

r 4 + 
δM(n ) 

1 + heωM(n ) 

) 

> 1 

(33) 

e solution to the system (5) . From (32) , we get 

 1 ( n ) − β2 M ( n ) + σ1 M ( n ) 

( n ) − β2 M ( n ) + σ1 M ( n ) ) e −( r 1 p −β1 C 1 ( n ) −β2 I ( n ) + σ1 M ( n ) ) 
< 1 

 

S ( n ) − θC 1 (n ) + β2 ( 1 − ε 2 ) M(n ) 

 ) − θC 1 (n ) + β2 ( 1 − ε 2 ) M(n ) ) e −( r 2 + β1 ( 1 −ε 1 ) S ( n ) −θC 1 (n )+ β2 ( 1 −ε 2 ) M(n ) ) 
< 1 

 

n ) + β1 ε 1 S ( n ) + β2 ε 2 M ( n ) 

+ β1 ε 1 S ( n ) + β2 ε 2 M ( n ) ) e −( 1+ θC 1 ( n ) + β1 ε 1 S ( n ) + β2 ε 2 M ( n ) ) 
< 1 

σ2 − γ N(n ) 

1 + heωM(n ) 

− σ2 − γ N(n ) 

1 + heωM(n ) 

)
e 

−
( 

r 3 −σ2 −
γ N(n ) 

1 + heωM(n ) 

) < 1 

 4 + 

δM(n ) 

1 + heωM(n ) 

 ) ) + 

δM(n ) 

1 + heωM(n ) 

)
e 

−
( 

r 4 + 
δM(n ) 

1 + heωM(n ) 

) 

< 1 

(34) 

T

 notations to simplify the computations: 

U

U

U

U

U

T and assume that the conditions in Theorem 2 and Theorem 3/(i) hold. 

I

0

hen ( S( n ) , C 1 ( n ) , C 2 ( n ) , M( n ) , N( n ) ) ∞ 

n =0 is decreasing monotonica

Proof. 

(i) Let ( S( n ) , C 1 ( n ) , C 2 ( n ) , M( n ) , N( n ) ) ∞ 

n =0 
be a positive solutio⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

S ( n + 1 ) 

S(n ) 
= 

r 1 p − β1 C

α1 r 1 S ( t ) + ( r 1 ( p − α1 S ( t ) ) − β1 C 1 
C 1 ( n + 1 ) 

C 1 ( n ) 
= 

r 2 + β1 ( 1 − ε 1 )

α2 r 2 C 1 ( n ) + ( r 2 ( 1 − α2 C 1 ( n ) ) + β1 ( 1 − ε 1 ) S ( n

C 2 ( n + 1 ) 

C 2 ( n ) 
= 

1 + θC 1 (

α3 C 2 ( n ) + ( 1 − α3 C 2 ( n ) + θC 1 ( n ) 

M ( n + 1 ) 

M(n ) 
= 

r 3 −

α4 r 3 M(n ) + 

(
r 3 ( 1 − α4 M(n ) ) 

N ( n + 1 ) 

N(n ) 
= 

r

α5 r 4 N(n ) + 

(
r 4 ( 1 − α5 N(n

(ii) Assume that ( S( n ) , C 1 ( n ) , C 2 ( n ) , M( n ) , N( n ) ) ∞ 

n =0 
be a positiv⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

S ( n + 1 ) 

S(n ) 
= 

r 1 p − β1 C

α1 r 1 S ( t ) + ( r 1 ( p − α1 S ( t ) ) − β1 C 1 
C 1 ( n + 1 ) 

C 1 ( n ) 
= 

r 2 + β1 ( 1 − ε 1 )

α2 r 2 C 1 ( n ) + ( r 2 ( 1 − α2 C 1 ( n ) ) + β1 ( 1 − ε 1 ) S ( n

C 2 ( n + 1 ) 

C 2 ( n ) 
= 

1 + θC 1 (

α3 C 2 ( n ) + ( 1 − α3 C 2 ( n ) + θC 1 ( n ) 

M ( n + 1 ) 

M(n ) 
= 

r 3 −

α4 r 3 M(n ) + 

(
r 3 ( 1 − α4 M(n ) ) 

N ( n + 1 ) 

N(n ) 
= 

r

α5 r 4 N(n ) + 

(
r 4 ( 1 − α5 N(n

his completes the proof. 

To prove the global stability in Theorem 2, we use the following

 1 (n ) = r 1 p − β1 C 1 ( n ) − β2 M ( n ) + σ1 M ( n ) 

 2 (n ) = r 2 + β1 ( 1 − ε 1 ) S ( n ) − θC 1 (n ) + β2 ( 1 − ε 2 ) M(n ) 

 3 (n ) = 1 + θC 1 ( n ) + β1 ε 1 S ( n ) + β2 ε 2 M ( n ) 

 4 (n ) = r 3 − σ2 − γ N(n ) 

1 + heωM(n ) 

 5 (n ) = r 4 + 

δM(n ) 

1 + heωM(n ) 
. 

heorem 4. Let 
 be the positive equilibrium point of system (5) 

f 

 < U 1 (n ) < ln 

(
2 ̄S − S(n ) 

S(n ) 

)
f orS(n ) < S̄ 
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 and lim 

n →∞ 

X(n ) = 
, where 

lution of system (5) . 

V (35) 

M, N ) . 

− 2
) . (36) 

 

M ( n ) ) 
(
1 − e −( r 1 p −β1 C 1 ( n ) −β2 I ( n ) + σ1 M ( n ) ) 

)
 ) + σ1 M ( n ) ) e −( r 1 p −β1 C 1 ( n ) −β2 I ( n ) + σ1 M ( n ) ) 

> 0 (37) 

(38) 

(39) 

¯
 . Similarly, we can obtain the conditions 

(40) 

(41) 

(42) 

(43) 

 = N̄ , which completes the proof. �
on in Early Detection 

ain mono-species growth. If x represents the population size at time t , 

(44) 

omena, many situations require modifications in the main model to 

well known as the Allee effect [25] . The Allee effect can be divided into 
0 < U 2 (n ) < ln 

(
2 ̄C 1 − C 1 (n ) 

C 1 (n ) 

)
f or C 1 (n ) < C̄ 1 

0 < U 3 (n ) < ln 

(
2 ̄C 2 − C 2 (n ) 

C 2 (n ) 

)
f or C 2 (n ) < C̄ 2 

0 < U 4 (n ) < ln 

(
2 M̄ − M(n ) 

M(n ) 

)
f orM(n ) < M̄ 

and 

0 < U 5 (n ) < ln 

(
2 ̄N − N(n ) 

N(n ) 

)
f orN(n ) 

then the positive equilibrium point is globally asymptotically stable

X(n ) = ( S(n ) , C 1 (n ) , C 2 (n ) , M(n ) , N(n ) ) denotes the positive so

Proof. Let V be an appropriate Lyapunov function defined by 

 (n ) = ( X (n ) − 
) 
2 
, n = 0 , 1 , 2 , . . . , 

where X(n ) = ( S(n ) , C 1 (n ) , C 2 (n ) , M(n ) , N(n ) ) and 
 = ( ̄S , C̄ 1 , C̄ 2 , 

The change along the solutions of the system is 

V (n ) = V ( n + 1 ) − V (n ) = ( X ( n + 1 ) − X (n ) ) ( X ( n + 1 ) + X (n ) 

By considering the first equation of system (5) , we have 

V 1 (n ) = ( S ( n + 1 ) − S(n ) ) 
(
S ( n + 1 ) + S(n ) − 2 ̄S 

)
. 

From (33) , we obtain 

S ( n + 1 ) − S(n ) = 

S(n ) ( r 1 ( p − α1 S(n ) ) − β1 C 1 ( n ) − β2 M ( n ) + σ1

α1 r 1 S ( t ) + ( r 1 ( p − α1 S(n ) ) − β1 C 1 ( n ) − β2 M ( n

Moreover, 

S ( n + 1 ) + S(n ) − 2 ̄S < 0 

if 

0 < U 1 (n ) < ln 

(
2 ̄S − S(n ) 

S(n ) 

)
f orS(n ) < S. 

Then, this implies that V 1 ( n ) < 0 and, thus we have lim 

n →∞ 

S(n ) = S

0 < U 2 (n ) < ln 

(
2 ̄C 1 − C 1 (n ) 

C 1 (n ) 

)
and C 1 (n ) < C̄ 1 f orV 2 (n ) < 0 

0 < U 3 (n ) < ln 

(
2 ̄C 2 − C 2 (n ) 

C 2 (n ) 

)
and C 2 (n ) < C̄ 2 f orV 3 (n ) < 0 

0 < U 4 (n ) < ln 

(
2 M̄ − M(n ) 

M(n ) 

)
andM(n ) < M̄ f orV 4 (n ) < 0 

and 

0 < U 5 (n ) < ln 

(
2 ̄N − N(n ) 

N(n ) 

)
andN(n ) < N̄ f orV 5 (n ) < 0 

Thus, lim 

n →∞ 

C 1 (n ) = C̄ 1 , lim 

n →∞ 

C 2 (n ) = C̄ 2 , lim 

n →∞ 

M(n ) = M̄ and lim 

n →∞ 

N(n )

IV. Spread of Coronavirus with Control Parameters for an Infecti

In [24] , Verhulst considered the logistic growth function to expl

then the logistic growth equation has the form 

dx 

dt 
= rx 

(
1 − x 

K 

)
where r and K are positive numbers. However, in biological phen

explain the growth of the population in low density-size, which is 
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t A population with a strong Allee effect will have a critical population 

s ess than the threshold will go to extinction without any further aid. On 

t he per capita growth rate at lower population density or size [26–28] . 

 time t such as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 

M ( t ) ) 

 

+ β2 ( 1 − ε 2 ) M ( t ) ) 

 2 M ( t ) ) 

 ( t ) 

(45) 

w

a

 get a difference equation system such as 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 

C 1 ( n ) − β2 M ( n ) + σ1 M ( n ) ) 

 

n ) − β2 M ( n ) + σ1 M ( n ) ) e −( r 1 p −β1 C 1 ( n ) −β2 I ( n ) + σ1 M ( n ) ) 

 1 ) S ( n ) − θC 1 (n ) + β2 ( 1 − ε 2 ) M(n ) ) 

θC 1 (n ) + β2 ( 1 − ε 2 ) M(n ) ) e −a ( C 1 (n ) ) ( r 2 + β1 ( 1 −ε 1 ) S ( n ) −θC 1 (n )+ β2 ( 1 −ε 2 ) M(n ) ) 

 

( n ) + β1 ε 1 S ( n ) + β2 ε 2 M ( n ) ) 

 β1 ε 1 S ( n ) + β2 ε 2 M ( n ) ) e −( 1+ θC 1 ( n ) + β1 ε 1 S ( n ) + β2 ε 2 M ( n ) ) 

 

− σ2 − γ N(n ) 

1 + heωM(n ) 

)

σ2 − γ N(n ) 

1 + heωM(n ) 

)
e 

−
( 

r 3 −σ2 −
γ N(n ) 

1 + heωM(n ) 

) 

r 4 + 

δM(n ) 

1 + heωM(n ) 

)

 ) ) + 

δM(n ) 

1 + heωM(n ) 

)
e 

−
( 

r 4 + 
δM(n ) 

1 + heωM(n ) 

) 

(46) 

L

h

θC 1 (n ) + β2 ( 1 − ε 2 ) M(n ) ) 

 + β2 ( 1 − ε 2 ) M(n ) ) e −a ( C 1 (n ) ) ( r 2 + β1 ( 1 −ε 1 ) S ( n ) −θC 1 (n )+ β2 ( 1 −ε 2 ) M(n ) ) 

w  and 

U (47) 

T o support the Allee function in stabilizing the effect of the spread. 

now they are infected are the main populations that affect the Allee 

f ntial to keep human non-infected, the other essential aim is to detect 

t

s given by 

a (48) 

w h does not know they are infected. 
wo main types: (i) strong Allee effect and (ii) weak Allee effect. 

ize, which is the threshold of the population, and any size that is l

he other hand, a population with a weak Allee effect will reduce t

Let us incorporate an Allee function to the C 1 ( t ) class at discrete

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dS 

dt 
= S ( t ) ( r 1 ( p − α1 S ( t ) ) − β1 C 1 ( t ) − β2 M ( t ) + σ1

d C 1 
dt 

= a ( C 1 ( t ) ) C 1 ( t ) ( r 2 ( 1 − α2 C 1 ( t ) ) + β1 ( 1 − ε 1 ) S ( t ) − θC 1 ( t )

d C 2 
dt 

= C 2 ( t ) ( 1 − α3 C 2 ( t ) + θC 1 ( t ) + β1 ε 1 S ( t ) + β2 ε

dM 

dt 
= M ( t ) r 3 ( 1 − α4 M ( t ) ) − σ2 M ( t ) − γ f ( t ) N

dN 

dt 
= N ( t ) r 4 ( 1 − α5 N ( t ) ) + δg ( t ) N ( t ) 

here 

f ( t ) = 

M ( t ) 

1 + heωM ( t ) 
andg ( t ) = 

M ( t ) 

1 + heωM ( t ) 

re functions of Holling type II. 

Integrating both sides of (45) on [ n , t ) and taking t → n + 1 , we

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( n + 1 ) = 

S(n ) ( r 1 p − β1

α1 r 1 S(n ) + ( r 1 ( p − α1 S(n ) ) − β1 C 1 (

C 1 ( n + 1 ) = 

C 1 ( n ) ( r 2 + β1 ( 1 − ε

α2 r 2 C 1 ( n ) + ( r 2 ( 1 − α2 C 1 ( n ) ) + β1 ( 1 − ε 1 ) S ( n ) −
C 2 ( n + 1 ) = 

C 2 ( n ) ( 1 + θC 1

α3 C 2 ( n ) + ( 1 − α3 C 2 ( n ) + θC 1 ( n ) +

M ( n + 1 ) = 

M(n ) 

(
r 3

α4 r 3 M(n ) + 

(
r 3 ( 1 − α4 M(n ) ) −

N ( n + 1 ) = 

N(n ) 

(

α5 r 4 N(n ) + 

(
r 4 ( 1 − α5 N(n

et 

 (n ) = 

C 1 ( n + 1 ) 

C 1 ( n ) 

= 

( r 2 + β1 ( 1 − ε 1 ) S ( n ) −
α2 r 2 C 1 ( n ) + ( r 2 ( 1 − α2 C 1 ( n ) ) + β1 ( 1 − ε 1 ) S ( n ) − θC 1 (n )

here we obtain 

∂h (n ) 
∂ C 1 (n) 

< 0 , if the conditions of Theorem 3/(i) hold

 2 (n ) < 

a ( C 1 (n ) ) · θ
a ′ ( C 1 (n ) ) 

hus, screening in discrete time is an essential control parameter t

Remark 2 The susceptible class and the classes who do not k

unction in stabilizing the spread of transmission. While it is esse

he infected class before the symptoms occur. 

For a strong Allee effect, let us assume that the Allee function i

 ( C 1 ( t ) ) = 

(
C 1 ( t ) 

K 0 

− 1 

)
here K represents the Allee threshold of the infected class, whic
0 
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the contrary, assume that lim 

t→∞ 

C 1 (t) = L > 0 . From lim 

t→∞ 

sup C 1 (t) , any 

C

C  ) + β2 ( 1 − ε 2 ) M ( n ) ) ( C 1 ( t ) − K 0 ) ds 

eorems without proof. 

 (46) . Assume that the basic reproduction numbers are R 01 < 1 and 

R 01 ) 

 

) − α2 r 2 

) K 0 
C 1 −K 0 

) 

, (49) 

lly stable. �
 the Alle function is given by 

(50) 

not know they are infected. 

 (46) . Assume that the basic reproduction numbers are R 01 < 1 and 

R 01 ) 

1 ) − α2 r 2 

) E 1 + C 1 
C 1 

⎞ 

⎠ , (50) 

stable. �

bifurcation for system (5) . The following theorem is essential. 

(51) 

d only if 

4 r 3 ( 1+ heω ̄M ) 
2 

heωγ . If 

2 

) 

, ∞ 

) 

and ψ̄ 5 = ln 

( 

δ( 1 − R 02 ) 

δ( 1 − R 02 ) − α5 r 4 
(
1 + heω M̄ 

)2 

) 

 

, and the basic reproductive numbers are R 01 < 1 and R 02 < 1, then 

 have 

ψ̄ 1 

)(
1 − e −ψ̄ 2 

)
( 1 − R 01 ) 

1 r 1 α2 r 2 
(52) 
Theorem 5. If lim 

t →∞ 

sup C 1 (t) < K 0 , then lim 

t→∞ 

C 1 (t) = 0 . Proof. On 

ϖ > 0 with 

0 < � < K 0 − lim 

t→∞ 

sup C 1 ( t ) 

there exists t ϖ > 0 such that 

 1 ( t ) < lim 

t→∞ 

sup C 1 ( t ) + � f ort > t � 

For t > t ϖ and t ∈ [ n , n + 1 ) , we have 

 1 ( t ) = C 1 ( 0 ) exp 

(
t 

∫ 
0 

1 

K 0 
( r 2 ( 1 − α2 C 1 ( s ) ) + β1 ( 1 − ε 1 ) S ( n ) − θC 1 ( n

< C 1 ( 0 ) exp 

(
t 

∫ 
0 

−( K 0 − C 1 + � ) ds 

)

< C 1 ( 0 ) exp 
(
−
(
K 0 − C 1 + � 

)
t 
)

as t → ∞ , where we obtain a contradiction. �
To avoid redundancy with Section 3 , we stated the following th

Theorem 6. Let 
 be the positive equilibrium point of system

R 02 < 1. Thus, if conditions for Theorem 2 holds for 

ψ̄ 2 ∈ 

( 

ln 

(
1 + 

α1 r 1 
β1 ( 1 − ε 1 ) ( 1 − R 01 ) 

) K 0 
C 1 −K 0 

, ln 

(
β1 ( 1 − ε 1 ) ( 1 −

β1 ( 1 − ε 1 ) ( 1 − R 01

then the equilibrium point 
 of system (46) is locally asymptotica

In applying a weak Allee effect on system (46) , we assume that

a ( C 1 ( t ) ) = 

(
C 1 ( t ) 

E 1 + C 1 ( t ) 

)
, 

where E 1 is the Allee coefficient of the population class, that does 

Theorem 7. Let 
 be the positive equilibrium point of system

R 02 < 1. Thus, if conditions for Theorem 2 holds for 

ψ̄ 2 ∈ 

⎛ 

⎝ ln 

(
1 + 

α1 r 1 
β1 ( 1 − ε 1 ) ( 1 − R 01 ) 

) E 1 + C 1 
C 1 

, ln 

(
β1 ( 1 − ε 1 ) ( 1 −

β1 ( 1 − ε 1 ) ( 1 − R 0

then the equilibrium point of system (46) is locally asymptotically 

V. Neimark-Sacker Bifurcation Analysis 

In this section, we analyze the conditions for a Neimark-Sacker 

Theorem 8. [29] For a quadratic polynomial 

λ2 + l 1 λ + l 0 = 0 , 

a pair of complex conjugate roots of (51) lie on the unit circle if an

(i) P( 1 ) = 1 + � 1 + � 0 > 0 

(ii) P ( −1 ) = 1 − � 1 + � 0 > 0 

(iii) D 

+ 
1 

= 1 + � 0 > 0 

(iv) D 

−
1 

= 1 − � 0 = 0 . 

Theorem 9. Assume that β1 > θ + α2 r 2 , 
α2 
α1 

> 

r 1 
r 2 

, ɛ 1 < 1, and N̄ = 

α

ψ̄ 1 = ln 

(
β1 

β1 − α1 r 1 

)
, ψ̄ 2 = ln 

(
1 

β1 ( 1 − ε 1 ) ( 1 − R 01 ) − α2 r 2 

)]

ψ̄ 4 ∈ 

{ 

ln 

( 

γ

γ − α4 r 3 
(
1 + heω M̄ 

)
) } 

∪ 

( 

ln 

( 

γ

γ − α4 r 3 
(
1 + heω M̄ 

)
where r 1 < 

β1 
α1 

, r 2 < 

β1 ( 1 −ε 1 ) 
α2 

, r 3 < 

γ
α4 ( 1+ heω ̄M ) 

and r 4 < 

δ( 1 −R 02 ) 

α5 ( 1+ heω ̄M ) 
2

both S − C 1 , and M − N classes show Neimark-Sacker bifurcation. 

Proof. The S − C 1 class: Because of the characteristic Eq. (15) , we

� 1 = −
(

α2 r 2 e 
−ψ̄ 1 + ( θ + α2 r 2 ) e 

−ψ̄ 2 

α2 r 2 

)
and � 0 = 

β1 
2 
( 1 − ε 1 ) 

(
1 − e −

α
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F

ψ (53) 

w  0 and � 0 > 0. The condition (iv), shows that 

ψ (54) 

w th (53) and (54) , we obtain 

ψ (55) 

a

ψ (56) 

w

e 

� d � 0 = 

γ δ( 1 − R 02 ) 

(
1 − e −ψ̄ 4 

)(
1 − e −ψ̄ 5 

)
α4 r 3 α5 r 4 

(
1 + heω M̄ 

)3 
(57) 

F

ψ (58) 

ψ (59) 

w is completes the proof. �

is 

λ (60) 

w

λ

 

α2 r 2 
(
β1 − α1 r 1 

)
+ β1 

(
θ + α2 r 2 

)
( 1 − α2 r 2 ) 

2 α2 r 2 β1 

) 2 

(61) 

A

λ
 3 

(
1 + heω M̄ 

)2 

∓
α4 r 3 

(
1 + heω M̄ 

)2 
⎞ 

⎠ 

2 

, 

w

λ
 3 

(
1 + heω M̄ 

)2 
⎞ 

⎠ λ + 1 = 0 . (62) 
rom (i) we have 

¯
 1 > ln 

(
β1 

β1 − θ − α2 r 2 

)
and ψ̄ 2 > ln 

(
1 + 

α1 r 1 
β1 ( 1 − ε 1 ) ( 1 − R 01 ) 

)

here β1 > θ + α2 r 2 . It is evident that (ii) and (iii) hold, since � 1 <

¯
 1 = ln 

(
β1 

β1 − α1 r 1 

)
and ψ̄ 2 = ln 

(
β1 ( 1 − ε 1 ) ( 1 − R 01 ) 

β1 ( 1 − ε 1 ) ( 1 − R 01 ) − α2 r 2 

)

here R 01 < 1, r 1 < 

β1 
α1 

and r 2 < 

β1 ( 1 −ε 1 ) 
α2 

for ɛ 1 < 1. Considering bo

¯
 1 = ln 

(
β1 

β1 − α1 r 1 

)

nd 

¯
 2 = ln 

(
β1 ( 1 − ε 1 ) ( 1 − R 01 ) 

β1 ( 1 − ε 1 ) ( 1 − R 01 ) − α2 r 2 

)

here 
α2 
α1 

> 

r 1 
r 2 

. 

The M − N class: Considering the characteristic Eq. (22) , we hav

 1 = −

⎛ 

⎝ 

heωγ N̄ + 

(
α4 r 3 

(
1 + heω M̄ 

)2 − heωγ N̄ 

)
e −ψ̄ 4 

α4 r 3 
(
1 + heω M̄ 

)2 
+ e −ψ̄ 5 

⎞ 

⎠ an

rom the conditions of Theorem 9, we obtain 

¯
 4 ∈ 

{ 

ln 

( 

γ

γ − α4 r 3 
(
1 + heω M̄ 

)
) } 

∪ 

(
ln 

(
γ

γ−α4 r 3 ( 1+ heω ̄M ) 
2 

)
, ∞ 

)

¯
 5 = ln 

( 

δ( 1 − R 02 ) 

δ( 1 − R 02 ) − α5 r 4 
(
1 + heω M̄ 

)2 

) 

here N̄ = 

α4 r 3 ( 1+ heω ̄M ) 
2 

heωγ , r 3 < 

γ
α4 ( 1+ heω ̄M ) 

and r 4 < 

δ( 1 −R 02 ) 

α5 ( 1+ heω ̄M ) 
2 . Th

From Theorem 9, the characteristic equation of the S − C 1 class 

2 −
( 

α2 r 2 
(
β1 − α1 r 1 

)
+ β1 

(
θ + α2 r 2 

)
( 1 − α2 r 2 ) 

α2 r 2 β1 

) 

λ + 1 = 0 , 

here R 01 = 

β1 ( 1 −ε 1 ) −1 

β1 ( 1 −ε 1 ) 
. Thus, the complex eigenvalues are 

1 , 2 = 

( 

α2 r 2 
(
β1 − α1 r 1 

)
+ β1 

(
θ + α2 r 2 

)
( 1 − α2 r 2 ) 

2 α2 r 2 β1 

) 

∓ i 

√ √ √ √ 1 −
(

dditionally, the complex eigenvalues of the M − N class are 

4 , 5 = 

heωγN̄ δ( 1 − R 02 ) + 

(
δ( 1 − R 02 ) − α5 r 4 

(
1 + heω M̄ 

)2 
)
α4 r

2 α4 r 3 
(
1 + heω M̄ 

)2 
δ( 1 − R 02 ) 

i 

√ √ √ √ √ 1 −

⎛ 

⎝ 

heωγN̄ δ( 1 − R 02 ) + 

(
δ( 1 − R 02 ) − α5 r 4 

(
1 + heω M̄ 

)2 
)

2 α4 r 3 
(
1 + heω M̄ 

)2 
δ( 1 − R 02 ) 

here the characteristic equation is given as 

2 −

⎛ 

⎝ 

heωγN̄ δ( 1 − R 02 ) + 

(
δ( 1 − R 02 ) − α5 r 4 

(
1 + heω M̄ 

)2 
)
α4 r

α4 r 3 
(
1 + heω M̄ 

)2 
δ( 1 − R 02 ) 
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Fig. 2. (a) Spread of the C 1 class and effect (b) Spread of the C 1 class and effect on the on the susceptible S class, where θ = 0 . 01 . susceptible S class, where ɛ 1 = ε 2 = 0 . 3 . 

Fig. 3. (a) Spread of the C 1 class and effect on (b) Spread of the C 1 class and effect on. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table. 2 

Description of the parameters. 

Parameter Symbol Rate 

The growth rate of S ( t ) r 1 0.12 

The growth rate of C 1 ( t ) r 2 0.12 

The growth rate of M(t) r 3 0.18 

The growth rate of N(t) r 4 0.1 

Logistic rate of S ( t ) α1 0.05 

Logistic rate of C 1 ( t ) α2 0.1 

Logistic rate of C 2 (t) α3 0.15 

Logistic rate of M(t) α4 0.01 

Logistic rate of N(t) α5 0.01 

Rate of the S ( t ) population per year p 1.6 

Parametric lost from class S ( t ) to C 1 ( t ) β1 , β2 0.00134, 0.00044 

Rate of interaction between S(t) − M(t) σ 1 , σ 2 0.0001 

Predation rate γ 0.0045 

Rate of screening θ [0.01,0.05] 

Recognition of infection ɛ 1 , ɛ 2 0.3 

A conversion factor of N(t) δ 0.0044 

The attack rate of N(t) to M(t) e 0.15 

Rate of average time on infecting M(t) h 0.15 

Potential infectivity of N(t) ω ω ∈ (0, 1] 

c  

f  
4. Simulation results and conclusion 

4.1. Numerical simulations 

In this sub-section, we present numerical simulations that are

consistent with the theoretical results. Table 2 shows a descrip-

tion of the parameters that are given in system (5) . We as-

sume the initial conditions of system (5) as S(0) = 10 0 0 , C 1 (0) =
80 , C 2 (0) = 40 , M(0) = 30 and N(0) = 10 . The main objective here

is to demonstrate the changes in the control parameters; θ and

ε i ( i = 1 , 2 ) , where, θ is the screening rate and ε i ( i = 1 , 2 ) is the

rate of recognition. We emphasize that any increase in the screen-

ing rate might stop the pandemic spread. While at the same time,

it is also essential to realize that the recognition of this infection

depends on the continuation of the updated information regarding

the novel coronavirus Covid-19. It is an essential point to realize

that civilians are not necessarily knowledgeable about the infec-

tions of the coronavirus. Therefore, they should be guided about

fundamental ‘health care’ applications as well as the severe phe-

nomena worldwide through the WHO, media, health institutes. 

In Fig. 2 , the blue graph denotes the susceptible class S and

the red graph shows C 1 who do not know they are infected. Fig. 2 -

(a) represents the transmission of the infection that occurs in epi-

demic form in some areas. However, it spreads intensively to pan-

demic phenomena worldwide and covers almost the susceptible
 w  
lass. Here we assume that the screening rate in the hospitals ( be-

ore the symptoms appear) is around%1. Fig. 2 -(b) shows the graph

hen the symptoms appear late so that the awareness of the in-
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Fig. 4. The spread of transmission of S, C 1 . 

Fig. 5. Diagram of all population classes of (5) . 

f  

m

 

c  

d  

s  

t  

a  

e  

r  

θ  

θ  

c

 

T  

C  

d  

i  

t  

i  

f  

b

 

s  

Fig. 6. (a) Dynamical behavior of ( S ( t ), C 1 ( t )), (b) Dynamical behavior of ( S ( t ), C 1 ( t )), 

where θ = 0 . 01 where θ = 0 . 05 (c) Dynamical behavior of ( S ( t ), C 1 ( t )), (d) Dynamical 

behavior of ( S ( t ), C 1 ( t )), where θ = 0 . 1 where θ = 0 . 2 . 

Fig. 6. Continued 

b  

r  

s  

t  

s  

i

 

t  

t  

I

 

d  

C  

r  

e  

e  

ε  

F

ection is low. In this case, the endemic spread starts earlier and

ight be uncontrolled. 

Fig. 3 (a) shows that increasing the screening rate up to%5 de-

reases the spread of the infection, and remains the virus in epi-

emic form. In Fig. 3 (b), we fix the screening rate to%5 but con-

ider the awareness of the symptoms as ɛ 1 = ε 2 = 0 . 3 to compare

he difference between Fig. 2 (b) and Fig. 3 (b). It is seen that to be

ware of the symptoms in the early stages is an essential param-

ter that affects the speed of the transmission. In section IV, the

ate of screening was discussed intensively, and it was shown that

is one of the essential control parameters. and C 2 classes, where

= 0 . 01 . the susceptible S class, where θ = 0 . 05 . the susceptible S

lass, where θ = 0 . 05 . 

In Fig. 4 , we considered the human-to-human infection cases.

he blue graph denotes the susceptible class S , the red graph the

 1 class who do not know they are infected and the green graph

enotes the C 2 that knows they are infected. It is seen that the

nfected class that do not know they are infected is higher than

he class that is determined as C 2 − which is the infected class who

s tested as positive. This means that the spread of transmission

rom human to human occurs mainly from the C 1 , which should

e controlled with the parameters ɛ 1 , ɛ 2 and θ. 

Fig. 5 shows a diagram of the population classes of (5) . It is

een that the natural host and the intermediate host has a sta-
le dynamical system in the habitat. In contrast, they have only a

ole as hosts in the transmission of the coronavirus. The pandemic

pread undergoes when the infection is transmitted from human

o human. The intermediate host (animal) shows only an endemic

pread, which should be considered as a minor role in this dynam-

cal structure. 

Fig. 6 (a)-(d) show the relation of the susceptible class S ( t ) and

he C 1 ( t ) class, who do not know they are infected. We increase

he screening rate in each graph to%1,%5,%10, and%20, respectively.

t is noticed that the effect of C 1 ( t ) relative to S ( t ) decreases. 

Finally, Fig. 7 (a) and 7 (b) shows the rate of recognition of the

ynamical behavior related to the susceptible class S ( t ) and the

 1 ( t ) class who do not know they are infected. We found that the

ecognition through health organizations and media are highly op-

rative points to stop the pandemic spread and return it to its

ndemic form. At first, we considered the rate of recognition as

 i = 0 . 4 and after that ε i = 0 . 6 for i = 1 , 2 , which are shown in

ig. 7 (a) and (b), respectively. 
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Fig. 6. Continued 

Fig. 6. Continued 

Fig. 7. (a) Dynamical behavior of ( S ( t ), C 1 ( t )), (b) Dynamical behavior of ( S ( t ), C 1 ( t )), 

where ε i = 0 . 4 where ε i = 0 . 6 . 

Fig. 7. Continued 
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. Conclusion 

In this paper, we first review the reasons for the spread of coro-

aviruses from the natural host to the human host. After that, we

stablished a model of the novel coronavirus, which is known as

OVID-19, described by differential equations with piecewise con-

tant arguments. The model is constructed in alignment with im-

ortant biological and medical reasons. We divided the model into

ve sub-classes; 

• the susceptible class S , 

• the infected class C 1 , that does not know they are infected since

specific symptoms do not appear, 

• the infected class C 2 that knows they are infected because of

some symptoms such as respiratory and intestinal infections,

including fever, dizziness, and cough, appeared. 

• the intermediate domestic host M , that has a transmission role

from the natural host to the human host 

• the natural host N , that are bats of genus Rhinolophus. 

We considered in this study the pandemic infection case; an-

mal to human and human to human. Therefore, the first three

quations in the model show human to human transmission, while

he spillover from the intermediate infected class to the human

ost denotes a predator-prey mathematical model, and the trans-

ission from the natural host to intermediate host is a host-

arasite model of Holling Type II. 

The main results are then stated and proved. In Section 3 , we

nalyzed the local and global stability of the co-existing equilib-

ium point via the Linearized Stability Theorem and a Lyapunov

unction, respectively. Theorem 2 and Theorem 3 show the stabil-

ty results when the natural host population is under control, but

he screening of C 1 is not high. We deduced that the necessary re-

roduction numbers R 01 < 1 and R 02 < 1, that shows the transmis-

ion potential of the S − C 1 and the M − N classes, respectively. We

oncluded that among the human hosts, those who do not know

hey are infected, are the control class in the spread. In contrast,

etween the animal hosts, the intermediate class plays a domi-

ant role since that class has an essential role in transmitting the

isease from animal to human. We noticed that C 1 can decrease

f there might be a periodic screening and awareness of informa-

ion transmitted through media. For the susceptible class it is more

mportant to keep the population rate per year non-infected. The

ransmission of the virus to the offspring would reach an uncon-

rollable phenomenon worldwide. 
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Later in Section IV, we incorporated the Allee function at a

iscrete-time t . We analyzed both weak and strong Allee effect and

btained that screening for possible inflectional cases in discrete

ime is an essential control parameter to support both Allee func-

ions in stabilizing the effect of the spread. We emphasized that

he susceptible class and the classes who do not know they are

nfected are the central populations that affect the Allee function

n stabilizing the spread of transmission. While it is the priority to

eep human non-infected, the other essential aim is to detect the

nfected class before the symptoms appear. 

In Section V, we obtained that the system demonstrates a

eimark-Sacker bifurcation under specific conditions. It is seen

hat the basic reproduction number R 01 , and the natural host has

n essential role in the mentioned bifurcation. 

In the end, numerical simulations, along with graphical illus-

rations, are presented to examine the validity of our theoretical

ndings. We focused on two control parameters, which are θ , the

creening rate and ε i ( i = 1 , 2 ) , the rate of recognition. We ob-

ained that if the screening percentage stays low, the spread of in-

ection reaches to a pandemic form since the group who do not

now they are infected is the significant risk group in transmis-

ion. The rate of recognition shows the behavioral act of the civil-

ans considering the daily information from the health organiza-

ions. It is seen that any discrete-time of ‘health care’ protections

ould expand the pandemic spread over time. 

The results of this paper studied a biomedical model that de-

cribes the character of coronavirus. The analysis of the model,

s well as specific qualitative properties, are discussed through-

ut the paper. Our study is based on mathematical interpretations

nd consistent with biological and medical assumptions. We be-

ieve that our results are essential and of great significance for fur-

her investigations. 
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